Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 251: 121135, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38290189

RESUMO

In this investigation, we evaluated the applicability of the Stochastic Rainfall Generator (STORAGE) as a data source for deriving design hydrographs in urban catchments. This assessment involved a comparison with design rainfall calculated using Intensity-Duration-Frequency (IDF) curves derived from observed time-series data. The resulting design rainfall values from both methods were incorporated into a hydrodynamic model of the storm sewer network. To simulate peak discharge and flood areas, the Storm Water Management Model (SWMM) program was employed in conjunction with SCALGO. Our findings indicate that design rainfall values obtained from the STORAGE model exceeded those derived from the observed time-series, with a more pronounced difference for shorter rainfall durations. Simulations further revealed that peak runoff disparities between the two approaches were most evident at a 0.10 probability of exceedance compared to a 0.01 probability. Hydrodynamic simulations demonstrated that the flooding volume induced by design rainfall based on the STORAGE model surpassed that resulting from observed rainfall. Across all events, both the flooding volume and area from STORAGE were consistently greater than those derived from IDF curves. The integration of the SWMM model with the SCALGO application introduced a novel functionality for dynamic visualization of flooding, offering valuable insights for effective flood management in urban areas.


Assuntos
Inundações , Chuva , Movimentos da Água , Probabilidade , Fatores de Tempo , Água , Cidades , Modelos Teóricos
2.
Environ Sci Pollut Res Int ; 31(4): 5973-5988, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38129725

RESUMO

The water-regulating capacity of nature-based solutions (NBSs) plays a crucial role in providing a full range of ecosystem services and enhancing the resilience of urban systems. This work focuses on the hydrological performance of a particular NBS, the so-called blue-green roof (BGR). The BGR is designed to collect infiltrated rainfall in a water storage layer beneath the soil to support vegetation maintenance, enhance evapotranspiration and cooling, and minimize runoff and drainage system load. The study aims to evaluate the hydrological performance of the BGR at global and event scale and, for the first time, to model climatic factors (easy to measure using common sensors) that affect its stormwater retention capacity. The data collected over 2 years and 2 months at a 5-min resolution from a pilot study in Central Italy were analysed. Additionally, a new climatic index called AWWP-x (Antecedent Wet Weather Period index) was introduced and calculated. Results show that the BGR has an overall relevant retention rate (67.1%), although the value depends on the rainfall of the observed period. Approximately 50% of the rainfall events did not produce any runoff, and during the dry season, all events were totally absorbed by the BGR. Four climatic variables were identified as significant factors for predicting BGR retention performance (R2 = 0.50). The results suggest that AWWP-130 (number of days to reach 130 mm cumulative precipitation) could be a possible proxy for the BGR stormwater retention rate. In general, this study demonstrates the potential for evaluating, planning, and designing NBSs by considering the annual and interannual climatic variability of the investigated specific location.


Assuntos
Ecossistema , Chuva , Projetos Piloto , Movimentos da Água , Água , Conservação dos Recursos Naturais
3.
J Hazard Mater ; 364: 256-263, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30368063

RESUMO

In this paper, the treatment of asbestos-cement waste (ACW) has been attempted by a dark fermentation (DF) pre-treatment followed by hydrothermal and anaerobic digestion (AD) treatments. During DF, glucose, employed as a biodegradable substrate, was mainly converted to H2-rich biogas and organic acids (OAs). The latter caused the dissolution of the cement matrix and the partial structural collapse of chrysotile (white asbestos). To complete the chrysotile degradation, hydrothermal treatment of the DF effluents was performed under varying operating conditions (temperature, acid type, and load). After the addition of 5.0 g/L sulfuric acid, a temperature decrease, from 80 °C to 40 °C, slowed down the treatment. Similarly, at 100 °C, a decrease of sulfuric, lactic or malic acid load from 5.0 g/L to 1.0 g/L slowed down the process, regardless of acid type. The acid type did not affect the hydrothermal treatment but influenced the AD of the hydrothermal effluents. Indeed, when malic acid was used, the AD of the hydrothermally treated effluents resulted in the highest production of methane. At the end of the AD treatment, some magnesium ions derived from ACW dissolution participated in the crystallization of struvite, an ecofriendly phosphorous-based fertilizer.


Assuntos
Asbestos Serpentinas , Reatores Biológicos , Materiais de Construção , Resíduos Industriais , Gerenciamento de Resíduos/métodos , Anaerobiose , Asbestos Serpentinas/química , Ácidos Carboxílicos/química , Fermentação , Fertilizantes , Temperatura Alta , Fósforo , Esgotos
4.
J Environ Manage ; 115: 136-46, 2013 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-23246906

RESUMO

Water resource management is often characterized by conflicts, as a result of the heterogeneity of interests associated with a shared resource. Many water conflicts arise on a global scale and, in particular, an increasing level of conflicts can be observed in the Mediterranean basin, characterized by water scarcity. In the present work, in order to assist the conflict analysis process, and thus outline a proper groundwater management, stakeholders were involved in the process and suitable tools were used in a Mediterranean area (the Apulia region, in Italy). In particular, this paper seeks to elicit and structure farmers' mental models influencing their decision over the main water source for irrigation. The more crucial groundwater is for farmers' objectives, the more controversial is the groundwater protection strategy. Bayesian Belief Networks were developed to simulate farmers' behavior with regard to groundwater management and to assess the impacts of protection strategy. These results have been used to calculate the conflict degree in the study area, derived from the introduction of policies for the reduction of groundwater exploitation for irrigation purposes. The less acceptable the policy is, the more likely it is that conflict will develop between farmers and the Regional Authority. The results of conflict analysis were also used to contribute to the debate concerning potential conflict mitigation measures. The approach adopted in this work has been discussed with a number of experts in groundwater management policies and irrigation management, and its main strengths and weaknesses have been identified. Increasing awareness of the existence of potential conflicts and the need to deal with them can be seen as an interesting initial shift in the Apulia region's water management regime, which is still grounded in merely technical approaches.


Assuntos
Água Subterrânea , Modelos Teóricos , Teorema de Bayes , Sistemas de Informação Geográfica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...